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ITERATIVE AND PETROV-GALERKIN METHODS 
FOR SOLVING A SYSTEM OF ONE-DIMENSIONAL 

NONLINEAR ELLIPTIC EQUATIONS 

GUO BEN-YU AND J. J. H. MILLER 

ABSTRACT. Two sequences of supersolutions and subsolutions are constructed. 
Their limits are the solutions of a system of one-dimensional nonlinear elliptic 
equations. A Petrov-Galerkin scheme is proposed. The existence of solutions 
of the resulting discrete system is proved by an iteration which also provides a 
numerical method. 

1. INTRODUCTION 

In studying some problems arising in electromagnetism, biology, and some 
other topics, we have to consider systems of nonlinear elliptic equations and 
their numerical solutions. The properties of such systems are very different 
from those of a single equation (see, e.g., Aronson and Weinberger [1], Fife 
and Tang [4, 5], Grindrod and Sleeman [6], and Guo Ben-yu and Mitchell [7]). 
Recently, Guo Ben-yu and Miller [8] proposed an iterative method and a Petrov- 
Galerkin scheme for a single nonlinear elliptic equation. This paper is devoted 
to generalizing these two methods to a system of nonlinear elliptic equations. 

It is not difficult to prove the existence of solutions of such systems following 
the work of [6]. But we prefer to develop a new constructive proof in ?2, which 
also provides an iterative method. The main idea is to construct sequences of 
supersolutions and subsolutions, the limits of which are the exact solutions. For 
each step of the iteration we only have to solve a system of linear elliptic equa- 
tions by a finite difference scheme or finite element method. If we choose the 
former, then the whole iteration is quite close to a finite difference method for 
the original problem in conjunction with a Newton procedure. But the conver- 
gence of Newton's method depends on the error between the exact solution and 
initial value, which is very difficult to estimate. Conversely, it is easier to choose 
the initial values in our iteration method. Furthermore, the monotonicity of the 
sequences gives upper bounds and lower bounds of the exact solutions. 

In ?3, we consider a Petrov-Galerkin method in which test functions are dif- 
ferent from the trial functions. Thus, we derive a scheme which is as simple 
as a finite difference scheme and as accurate as the finite element method. In 
particular, this scheme is of positive type and thus possesses properties similar 
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to those of the original problem. Hence, it is easy to deal with the existence of 
solutions of the resulting discrete system by an iteration which provides a nu- 
merical method for solving such a system. We also estimate the error between 
the exact solution and the approximate one, using local Green's functions. Fi- 
nally, we consider further approximations in ?4. This method can be generalized 
to problems with discontinuous coefficients. 

2. ITERATIVE METHOD 

Let I = {xI O < x < 1}, I be the closure of I, and U = (U1, U2, * ,Um)T 
be a vector function of x. The given function 

f(x, u) e [C1(I x Rm) n C(I X Rm)]m 

has components f (x, u). Furthermore, let 

u (x)=) ai(x) and l=diag(l,12,...,lm) 

with 
I1ui(x) = -(a1(x)u'(x))', 1 < i < m, 

where aj(x) E C1 (I). Assume that there exist positive constants ao, Ca,, and 
a nonnegative constant a2 such that 

ao < a}(x) < al, |9ai(x) < a2 forxeI, 1 <i<m. 

Let Fi,U(x, u) = '9f? (x, u) and define 

Lu(x) = lu(x) + f(x, u(x)). 

We consider the following problem: 

(2.1) f Lu(x) = O, x E I, 

( u(O) =u(l)=0. 

The solution of such a system is a vector function u(x) e [C2(I) n C1(I)]m 
satisfying (2.1). If ui(x) < vi(x) for all x e I and 1 < i < m, we say that 
u < v. If u* < u < K*, then we say that u E K(u*, u*). We begin with the 
maximum principles. 

Lemma 2.1. If U e [C2(I) n Cl(I)]m and 

lu x) > O. x E I, 

lU(O) > O. u(l) > O. 

then u(x) > 0 for x E I. Similarly, if 

lu(x) < 0, x C I, 
{ u(O) < 0, u(1) < 0, 

then u(x) < O for x E 7. 

We now introduce the concept of supersolution and subsolution. 
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Definition 2.1. A vector function U9 E [C2(I) n C'(I)]m is a supersolution of 
(2.1) if 

JLukx) > O. x E I, 
lg(o) > O, (1)>O. 

Similarly, u E [C2(I) n Cl(I)]m is a subsolution of (2.1) if 

{ Lu(x) < 0O x E I, 
u(O) < 0, u(l) < O. 

There is no definitive result for the existence of supersolutions and subsolu- 
tions. But if f(x, u*) > 0 and f(x, u*) < 0 for some nonnegative constant 
vector u* and nonpositive constant vector u*, then u =_ u* and u _ u* are su- 
persolution and subsolution of (2.1), respectively. We now turn to the existence 
of solutions of (2.1). 

Theorem 2.1. Assume that (2.1) has a supersolution ii and a subsolution u 
such that 

(1) u(x) < ?(x) for x e 7; 
(2) IF, i(x, )I< MforxCI and q e K(u), 1) l<i<m; 
(3) Fi,j(x, rl) < O for x E I, ?I E K(u , ui), and i :? j, I < i, j < m. 

Then (2.1) has a solution in K(u, ii) which is the limit of a nonincreasing 
sequence of supersolutions. Problem (2.1) also has a solution in K(u, ui) which 
is the limit of a nondecreasing sequence of subsolutions. 
Proof. We first let wT(?) = ui and define a sequence as follows: 

(2.2) (l + M)Tk+ (X)-MWk(x) + f(x Tk(x)) =0, X E I, 

(2.2)~ ~ 
k I 

w l(0) = Uwk+ I(1) = O. 

We use induction. Suppose that Tik e K(u, ui) is a supersolution. Clearly, 
Wk+l e [C2(I) n Cl(I)Im. Let Zk+l = Tk+1 _ Uik; then we have from (2.2) 
that 

{ (l +M)zk+l(X) =-lkk(x)_f(x, Tik(X)) =-LWk(X) < 0, X E I, 
zk+1(0), Zk+I (1) < 0. 

Since the maximum principle is also valid for the operator I + M, we have 
zk+I(x) < 0 and Wk+I < Wk < U . Now let 

Fl,,(x, q) ... Fm,m(X 1) 

F(x, r/)= 
\Fm, I (X 41,) 

Then 

(l + M)(w Tk I(x) -u(x)) 
= M(UTfk(X) - u(x)) - Lu(x) + f(x, u(x)) -f(x, iThk(X)) 

> M(wTk (x) - u(x)) - F(x, Ok(X))(Uik(X) - (x)) 

where 6k E K(u, UTk) c K(u, ui) and thus 

IF1,i(x, ok(x))l < M, Fi,j(x, Ok(x)) < 0 for i : j. 
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Therefore, 
(l + M)(UTk+l (x)-u(x)) > , x e I, 

UT k+(O) > u(O), Uk+1(1) >U(j). 

By the maximum principle, we find that u < UTk+l, and so Wk+l E K(u, u)). 
Moreover, 

LUT k+l (x) = 1Uk+1 (x) + f(x Uk+I (x)) 

-Mzk+l + f(x Ujk+l (x)) - f(x, 5 w.k(x)) 

-Mzk+l (x) + F(x 6k+1 (X))Zk+1 (X) > 0, 

where 6k+1 e K(UTk+l ,k) c K(u, ui), and thus Wk+l is also a supersolution 
of (2.1). The above statements ensure that there is a function w e K(u, ui) 
such that 

w (x) = lim Wk. (X), x E 7. 
k-*oo 

In order to show that wT(x) is a solution of (2.1), we introduce a Green's 
function as follows: 

G(x, s) = diag(G1(x, s), G2(X, S), ..., Gm(X, s)), 

where 
1 iGi(x , s) = J(x , s), x EIS7 s ,1< i< m, 

Gi(O, s) =Gi(l, s)= O. sE I, 1< i <m. 

It can be verified that 

G~(x, s)_ = { g(l)(S)g(2)(X) if x <s 
| 1)(X)g(2)(S), ifs <x, 

where 

dt~ dt[ (2) fX) x 

A1= (JO ai(t)} - g' (x) Jx ai(t)' g(x) ai(t) 

Then (2.1) is equivalent to 

(2.3) u(x) = -j G(x, s)f(s, u(s)) ds, 

while (2.2) is equivalent to 
1 

(2.4) Uk+1(X) = G(x S)[M-Wk+l(S) _M-Wk(S) +f(S 5 Wfk (s))]ds 

It is easy to show that Tk converges to w uniformly for x e I. Letting 
k -- oo in (2.4), we see that UT satisfies (2.3). We also have from (2.3) that 
w e [C2(I) n Cl(I)]m and wT(O) = wT(l) = 0. Hence UT is a solution of (2.1). 

We next let w? = u and define a sequence as follows: 

(2.5) { (+ M)Wk+1 (X)-Mwk(X) + f(x Wk(x)) = O x e I, 

wk+1(O) = Wk+1(1) = ?- 

By an argument similar to that in the previous paragraph, the second assertion 
is proved. El 
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The proof of Theorem 2.1 also provides us with an iteration to solve (2.1). 
For each k, we only have to solve a linear problem by known numerical meth- 
ods. Fife and Tang [4, 5] also considered (2.1), but with a nonconstructive 
proof. On the other hand, many researchers constructed the iteration as follows 
(see, e.g., [6]): 

{ k+1 (X) + f(x ,wk(x), Wk+?1 (X)) = O X e 

wk+1(0) = wk+1(1) = 0, 

with 

fj(x, wk(X), Wk+1(X)) 

=fi(X, Wk(X) 5 ...,5 Wk l(x) , Wik+I(X), Wik J(X), *--, 5W w(X)). 

In this case we need two iterations to solve (2.1), which is not so convenient for 
computation. 

If for each step k, we use a finite difference scheme to solve the linear prob- 
lems (2.2) and (2.5), then the whole iterative method is very close to the same 
difference scheme approximating (2.1) directly in conjunction with a Newton 
procedure. But the convergence of such an approach depends on the choice of 
the initial values. Generally, (2.1) has several solutions. Therefore, the corre- 
sponding sequences tend to different exact solutions for different initial values. 
But it is usually not possible to estimate the errors between the exact solutions 
and the initial values. On the other hand, it is easier to construct supersolutions 
and subsolutions. The sequences given by (2.2) and (2.5) tend to fixed solutions, 
respectively. Furthermore, these sequences are monotonic in k and so provide 
bounds for the exact solutions and for the error of the approximate ones. 

We now consider the uniqueness of the solution. 

Lemma 2.2 (Poincar6 inequality). If z(O) = 0 or z(l) = 0, then IIZII2(I) < 
IzI12 

Theorem 2.2. If Mlm < ao and JFi,j(x, q)I < Ml for all x e I and q e 
K(u*, u*), then (2.1) has only one solution in K(u*, u*). 
Proof. Let u and ii be solutions of (2.1). Let z = u - ii. Then 

(2.6) lz(x) + F(x, O(x))z(x) = O x e I, 

)z(0) = z(l) =0, 
where 6 lies between u and i, and so 6 e K(u*, u*). Multiplying the above 
equation by z and integrating by parts, we get 

(2.7) J; a1~x)(za(x)(Z(X))2 dx + Fi,j(x, 6(x))zi(x)zj(x) dx = 0, 
j-1 

1 <i<m. 

By Lemma 2.2, 

J1 
; Fi, j (xu, (x)) zii(x) zj (x) dx 

< 2 (L~2 (I) + IjiL2 (I)) < 2 Hli~lI + IlH1I)) 
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By substituting the above estimates into (2.7), we get 

(ao - Mlm)IzI ) < 0, 

from which, and the boundary conditions, the conclusion follows. El 

We now estimate the error between UTfk and wU. 

Theorem 2.3. Assume that the conditions of Theorem 2.1 hold and that 

IFi,j(x, q)l < Ml for all x e I and q e K(u, -). Then 

lW - WIIL??(I) < ITk - WIHI(I) < yk/2LUTO - WHIH(I), 

provided that Ml m < 2ao and 

Ml (2m + 1)_ 
= 4ao - 2Mm m 

Proof. Let zk = Tk _ UT. Then 

(1 + M)Zk+l (X) = MZk(X) + f(x, UT(x)) - f(x, Tk(X)) 

= Mzk(X) - F(x, ok(x))Zk(X), 

where Ok lies between UTik and w , and thus ok e K(u, ii). By an argument 
similar to that in the proof of Theorem 2.2, we obtain 

; iX((Zik+1(X))')2d + l~k+1 112(I- Zik(X)Zik+l~xd 

+ EJ Fi,j(x, ek(x))zk+l (x)z k(x) dx = 0. 
j=1 

Since 

M z ((x)zik1(x)dx <Mljzizk+ 1L2(I) + M IZ (I) 

and 

;ij(x ok(x))zk+l(x)zk(x)dx < M(Iz +i H ) 

we get 
(2ao - MIm)I zk+12 (I) <Mi(m + )lzkil(2 

from which the conclusion follows. El 

We can similarly estimate the error between wk and w . 

Remark 2.1. If m= 1 and 9f(x, a) >0 for all xEI and iE R,then(2.1) 
has certainly supersolutions and subsolutions, and any supersolution is not less 
than any subsolution. So (2.1) has a unique solution in R. We can also estimate 
the error by the maximum principle (see Guo Ben-Yu and Miller [8]). 

3. PETROV-GALERKIN METHOD 

Another way to solve (2.1) numerically is to discretize (2.1) ,directly and 
obtain a discrete nonlinear system. Then we use iteration to solve this discrete 
system. In this section, we consider a Petrov-Galerkin method, which has been 
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widely used for single equations (see, e.g., Christie et al. [3] and Kuo Pen-yu 
and Mitchell [9]). 

We begin with a weak formulation of (2.1). We seek a solution u e [Ho' (I)]m 
such that 

(3.1) (aju', vi) + (fi, vi) =0 Vv e [HO'(I)]m, 1 < i < m, 

where (, *) denotes the inner product in L2(I) and 

(fi, vi) _(f&(, UNi), V&~)), I < i < m. 

To discretize (3.1), we introduce a set of mesh points {Xp}IN such that 

O = xO <xI < < XN-1 < XN = 1 

For each p, let Ip = (xp-1, xp), hp = xp - xp,,, and h = maxl<p<Nhp. 
Suppose that there exists a positive constant /B such that 

(3.2) maxl<pNhp </ 
minl<p<N hp - 

Let Sh = Hm I Sh, i and Th = Hm1 Th, i be finite-dimensional spaces of trial and 
test functions respectively. Then the approximate problem is to find Uh e Sh 
such that 

(3-3) (aiuh , i VhIj) +;fi(X, Uh(X))Vh~i(x) dx = 0 VVh e Th, < i < m. 

Let { pp}o and {PIN,}o be bases for the spaces Sh and Th, respectively, where 

9P = ( . p, 1 m) , YT p = (Y/p, 1 , Yipm) 

We seek a solution Uh e Sh of the form 
N-I 

Uh(X) = E Uh(xpp)p(x) for all x E I. 
p=1 

Then (3.3) becomes an integro-difference system of the form 

EN Ep (aigp i j) p/,Uh, i (Xp) 

(3.4) 1 +f fxux)qi(x) dx = 0 1 < i < m, I <q < N- 1, 
Uh(O) = Uh(l) = O. 

Now we assume that the following conditions are fulfilled: 

(HI) supp poUsuppypI c Ip UIIp+I for ?<p<N, 
(H2) (p,i(xq)= lp,i(Xq)= Jpq for l<i<m, O<p,q<N, 

(H3) (op,i(x) > 0 and ZpIilopi(x)_1 for x e I, 
(H4) fS',P (Oq, i(x) dx < 2 forqp ,p, 

(Hs lip, i (x) = for all X 0 XP I 5 << M, 5 < p <N- I. 
Then, by (HI) the coefficients for Uh, i(Xp) in the qth equation of (3.4) equal 
zero, unless IP - q I < 1 . Furthermore, (H2) and (H5) imply that the coefficient 
for Uh i(XpI), after integrating by parts, is 

pxp 
(aijPo di, , v )= ai(x) ol, i(x)yi, (x) dx = -ai(xp ) VP" i(xpI + 0). 

_I~~~j5~ 
VP 

_ 
P 
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The coefficients of Uhi (xp+) and Uh ,i(xp) are respectively 

(aiqpo+li, ylp i)=] ai(x)o+ , i(x) V/P, i(x) dx = ai(xp+ ) Y/p i(xp+i -0), 

XP+ 
(aifp~ipzp~i)=J ai (x)p i(X) vp i (x) dx 

= ai(xp) pi(xp -O) - ai(xp) y j(Xp + 0). 

Following Boglaev and Miller [2], we have from (H2) and (H5) that 

dt 
Ai,pL (t)' IP, 

vip(X) =XP+1 dt 
Ai~p~l ai (t) ' 

X E I+ 

0, otherwise, 

with 

= . _ cai (t)J 

It is easy to see that 

ai(xpi)yVPi(xp-l + 0) = ai(xp) VP,"i(xp - 0) = Ai,p, 
ai (xp+ 1) VP" i (xp+ I - 0) = ai (xp) VYP i (xp + 0) = -Ai, p+ 1. 

We now define 

1h = diag(1h, I1 1 h, 2 1* 1 h, m ) 

1h, iUh, i(Xp) = -Ai,,pUh, i(xp-1) + (Ai,p + Ai,p+ 1)Uh, i(Xp) - Ai,p+l Uh, i(Xp+ 1), 

and 
Lhuh(xP) = lhUh(Xp) + Jh,p(Uh), 

where 

Jh, p(Uh) = (Jh,p,I(Uh) A-- , J',p,m(Uh))T, 

Jh pi(Uh) = J(x, Uh(X))iIVp,i(x)dx 

=Ai p+l fi (X, Uh (Xp) Op (X) + Uh (Xp+ 1) Op+ I (X)) j t] dx 

+ Ai , p [fi (X, Uh (Xp_ 1) (p - I (X) + Uh (Xpd) p (X)x) at d.x 
xp-1 [alkt)] 

Then (3.4) becomes 

(35) f LhUh(xp) = O, 1 <p < N-1, 
( Uh(O) = Uh(l) = 0. 

It is easy to see that for each i, 1h, i is a difference operator of positive type. 
Thus the following maximum principle holds. 
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Lemma 3.1. If 
{ lhUh(xp) > ?, < p < N-1, 

Uh(O) >- O. Uh(l) >-O, 

then Uh(Xp) > 0 for all xp . Similarly, if 

|fIhuh(xp) < 0, I < p < N - 1, 

l Uh(O) < O. Uh(l) < O, 

then Uh (Xp) < O for all xp . 

We now introduce the concept of supersolution and subsolution. 

Definition 3.1. Uh is a supersolution of (3.5), if 

f Lhih(Xp) > ?, 1 < p < N- 1, 

t Uh(0) > O. uh(l) > O. 

Similarly, Uh is a subsolution of (3.5), if 

| LhUh(xP) < 0, 1 < p < N- 1, 

IUh(?) < ?, Uh(l) < O- 

If for some nonnegative constant vector u* and nonpositive constant vector 
Uh, * we have f(x, Uh,*) < 0 and f(x, u*) > 0, then by (H3), u* and Uh, 
are supersolution and subsolution of (3.5), respectively. We now turn to the 
existence of solutions of (3.5). 

Theorem 3.1. Assume that (3.5) has a supersolution Uh and a subsolution uh 
such that 

(1) Uhh(XP) < uh(XP) for 0 < p < N; 

(2) 1 Fi, ,i(X , qh) I < M for x E I and qh E K(Uh , iih) , I <- i <- m; 

(3) Fi,j(X, q~h) < 0 for x E I, y h E K(Uh, U9h),. and i :A j, 1 < i, j < m. 

Then (3.5) has a solution in K(Uh, Uh) which is the limit of a nonincreasing 

sequence of supersolutions. Also, (3.5) has a solution in K(uh, Uh) which is the 

limit of a nondecreasing sequence of subsolutions. 

Proof. We first let -*?) = Uh and define a sequence as follows: 

(3.6) { (lh +Eh)T +I(Xp)-EhTh(Xp) + Jh,p(UTk) = O, < p < N- 1, 

-~+I 0 U~k?1I() = 0, 

where 
Ehy(xp) = Mh(y(xp_1) + 2y(xp) + y(xp+i)). 

We use induction. Suppose that Thk e K(uh, Uh) is a supersolution. Let zk+1 = 

Whk+1 - fk * Then 

{ (h+ Eh)zh ~(xP) =-lhTT(xP) JhP(UThk) < 0, 1 <p < N-1, 

Zhk+1(0), Z~k+1(1) < 0. 

The maximum principle gives z k+I (xp) < 0, and so k + I < UTk < Us . We also 
have 

(3.7) (lh +Eh)(T U(xp)-Lh(XP)) = Eh(W(Xp) -h(Xp)) - LhUh(Xp) 

+ Jh,p(Rh) - Jh,P (Uik). 
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We now define 

Qh,p(Y,Y) =(Qh,p,1(YY), Qh,p,m(Y5 f))T 

Qh,p,i(Y, Y) = Jh,p, i(Y) - Jh,p,i(Y) 

= Ai,p+l E Fi, j (x, Hp) [ (yj (xp)-yj (xp)) Op, j (x) 
xP j=1 

+ (yj(xp+i) - y j(xp+i))epp+',I(x)Ij dpt) } dx 

rxp { m 
+ Ai,p | E Fi,j(x . Op-1)[(yj(xp-,) - j(xp-j))qp-l,j(x) 

j=1 

~X dt1 
+ (Yj (xp) - i (xp)) p, j (x) I a (t) dx 

where Hp lies between y(xp), y(xp+i), y(xp), and y(xp+i). Let 

Dijp- I (y yAip] Fij(x, p)gp-,,j(x) a(t) dx, 

Di, jp (y ) Ai,pj [Fi, j (x , p- 6 ) p, j (x) ai (t) ]dx 
fXp+1 [xp+1 d tdx 

+ ADi+p+l , Fi, j (x, p) p, j (x) ai(t) dx 

Dijp+l (y =Aixp+ll [Fij(x, Op)gp+lj(x) ai(t)J 

and 

/D1, 1,q(y, ) Dl ,m,q(Y51Y 
Dq(Y 5j) = | ) forq =p-l,p,p+l, 

Dmiq(Y )) DmImq(Y ,)) 

Dq (y y) diag(DI~~y y).--. DmmqY)- 

Then 

(3.8) Qh,p(Y. y) = Dp 1 (Y J)(y(xpi) -)-(xpi)) + Dp((y, y))(y(xp) -J(xp)) 

(3.8) +Dp+I(y, J))(y(xp+) -j(xp+ 1)). 

It is easy to show that 

(3.9) Ai,p > ah 

We have from (H3) that 

( jDi ip- I Mh< Mhp ) 

(3.10) < Di,i, p I < M(hp + hp+,) 5 

J D;; npl I < Mhpnl. 
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Using the above notations and the nonpositivity of Fij(x, 6p) for i 54 j, we 
have from (3.7) that 

( Ih + Eh ) (U 
k 
h (Xp)a X)) 

= Eh(Wh(XP) - Uh(XP)) -LhUh(XP) - Qhp( , h) 

> Eh (Thk (XP) -lUh(Xp)) - EI Dq(k - )( (Xq)- Uh(Xq)) 
q=p-1 ,p,p+l 

? Ei (T iY(Xp) -Uh (Xp)) - E Dq*iTs, ush) hWiTk(Xq Us (Xq)), 
q=p-1 ,p,p+I 

and thus (3.10) leads to 

(Yh + Eh) (Wh (xp )-U h(XP)) > 0. 

Therefore, Rh < UhTk+ and UhTk+ e K(Uh, Uh). Moreover, 

Lhk1 (Xp ) -hWhk+ 
I 
(XP ) + jh (W iJ l ) 

-k+1U~~l 
=hhk+I(Xp) + jh P(Uhk+l)-a _ (Wh 

=- h Ak (XP ) + Qh p (U hk+ l, hk)>- 

Thus, WhU) is also a supersolution of (3.5). The above argument implies that 
there exists a function Wh e K(uh, Uh) such that 

Wh(Xp) = lim UJk((Xp) for 0 <p < N. 
k-*oo 

Letting k -- oc in (3.6), we see that Wh is a solution of (3.5). 
Next, let ) = Uh and define a sequence as follows: 

{ (lh + Eh)hk+ I(xP) - EhWsk(XP) + Jh, p(YIk) = 0 1 < p < N- 1, 
7 w k+1(o) = wk+1(1) = 0. 

Then the second assertion follows from an argument similar to that above. E1 

The above statements show that the choice of test functions in this section 
is also appropriate for rough data. For instance, if ai(x + 0) :$ ai(& - 0), then 
we take x to be one of the mesh nodes, say xp = x. Then 

(ai 9, i, p V4 ) = ai(& - 0) #'(x - 0) - ai ( + O) '(x + 0). 

We also avoid integrating the function ai(x)Q(x) , where Q(x) is a polynomial. 
Besides, such a choice ensures the positivity of the operator 1h, i, and thus 
the resulting discrete system keeps properties similar to those of the original 
problem. These properties play an important role in the proof of the existence 
of solutions and in error estimations. (For results on a linear problem with 
rough coefficients, cf. the 2-method and the Remark on p. 527 of Babuska 
and Osborn [10].) 

We now consider the uniqueness of the solution. Define the following discrete 
norms: 

N 

11 Zh I1 oo = max I Zh (X) IIZhI2 = Zh, z(Xp ), 
xEI p=O 

Izh i = E (Z(Xp) -Z(X 
P=1 
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Lemma 3.2 (see [ 1 1]). If Zh (O) = Zh (1) = 0, then 

N-1 

F(yh, Zh) Z (-Yh (Xp)Zh (Xp_ 1 ) + Yh (XP)Zh (Xp) 
p=l 

+ Yh(Xp+1)Zh(Xp) -Yh(Xp+1)Zh(Xp+1))Zh(Xp) 

N 

- ZYh(Xp)(Zh(xp) - Zh(Xp- 1))2. 
p=l 

If; in addition, Yh(Xp) > ao/hhp for 1 < p < N, then F(yh, Zh) > aOIZhI 

The above lemma can be verified directly. 

Lemma 3.3. If Zh(O) =0 or Zh(l) = O, then IIZhII2 ? IZhI . 

Proof. Assume Zh (0) = 0. We have 

p 
Zh(Xp) = (Zzh(Xi) - Zh(XiJ-)). 

j=l 

Thus, 

2 (x ( hi) ( (Zh(Xi) -Zh(Xi-) ?I2 12 

and IIzhI2 <IzhIl I 
Theorem 3.2. If 4/1M1 m < ao and 

IFi~j(x, r1)I < Ml for all x E I and qE K(Uh,*,, U*), 

then (3.5) has only one solution in K(uh,*, Uh). 

Proof. Let uh and ah be solutions of (3.5) and Zh = Uh - Uh . Then 

{ lhZh(Xp)+Qh,p(Uh, ah) =0, l< p < N-1, 

Zh(O) = Zh(l) = O- 

Multiplying the above equation by Zh and summing over all xp, we obtain 
from Lemma 3.2, Lemma 3.3, (3.9), and (3.10) that 

N-I 

aOIzhl <I Zh(Xp)Qhp(Uh, ih) < 4IMlmIIzh 12 ? 4IM9mlzhIl, 
p=l 

from which, and the boundary conditions, the conclusion follows. El 

We now estimate the error between T k and Wh. 

Theorem 3.3. Assume that the conditions of Theorem 3.1 hold and that 

IFij,(x, )I? < Ml for all x e I and 1 E K(uh, -h). Then 

|| _ Uk-h jjcoo < |Uk _ UWh I 1 < Yklp _ Ug-h l l 

provided that 2f1M1 (m + 1) < oO and 

= ao-2/lMj(rn+l) <1. 
ao - 2flMI (m + 1) 
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Proof. Let z4k = k-k . Then 

(lh + Eh)Z(X ) -=- _Qhp(Uik, Wh), 1 <p < N-1. 

Multiplying the above equation by zk+l and summing over all xp, we have 

N-I 
(a0 2M1 m | Zk+ 1 12 + 1: (Eh Z~k+ I 

(Xp z+1() (aO - 2flMim) I z~ I~+ZEz (p))Zk+1(xp) 
p=l 

(3.11) N-I 

? 2fiMim~zhkl + (EhZhk(Xp))Zk+I(xp). 

p=1 

It is easy to show that 

(Ehzk+1 (Xp))Z(k+(Xp) > 0 

N-I 

(Eh zk(x p))zk+(xp) < 2fiMi(IIzkII2 + Ilz|+1II2) 
p=1 

< 2fiMi(IZhI1 + I zh I ) 

from which, and (3.11), the conclusion follows. El 

We can also estimate the error between Wk and j1h in the same way. 

Remark 3.1. If m = 1 and 9f(x, ) > 0 for all x e I and q e R, then (3.5) 

has certainly supersolutions and subsolutions, and any supersolution is not less 
than any subsolution. So (3.5) has a unique solution in R. We can also estimate 
the error by the maximum principle (see Guo Ben-yu and Miller [8]). 

Finally, we estimate the error between the exact solution u and the approxi- 

mate solution Uh . To do this, we introduce local Green's functions as follows: 

Gp(x, s) = diag(Gl,p(x, s), G2,p(x, s), ...Gm,p (x, s)), 

where 

J ,jGjp(x5 s) = s(x5 s), (x,s) EIp xIp, 1 ?<p<N- 1, 1 < i<m, 

Gi,p (xp- 1, s) = Gi,p (xp , s) = 0 5 s E Ip, 1 < p < N - 1,5 1 < i < m. 

Clearly, 

{ t MgI) (S)gl2) (X) s < x,5 G.J,p\x,. s) - 

p 1 (1) , (2 I g~)(~~2 S s< 

where the Ai,p are the same as before and 

IP Xdt fX dt 
gi1p(x) = Ai,p a(t) g(,(x) = Ai,p 

Thus, 

uj(x) = uj(xp~i)gi1>x) + up(xp)gi; (x) - J G (x, s)fi(s, u(s))ds. 
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By differentiating the above expression for ui in Ip and 7p+1, and putting 
x = xp, we get 

U( - 0) = uj(xp-Ig1(x) + uj (x2)g'x u' (p-O)= Ui(xp_1 )gi( P (xp ) + u i (Xp ) gi( ) (Xp ) 

X~P g()'(Xp) i(2p~)fsUS), 
Ai,P 9Xp ' 

iS us) s 1 JX 

U'i(xp + 0) = ui(xp)g M) 1 (Xp) + ui(Xp+l)gj(2, )1 (Xp) 

Ai, p+|x gi p+1(s)gi( I (xp) fi (s , u (s)) ds. 

Since u e CI(I), we have ut (xp - 0) = u'(xp + 0) and so 

{ lhU(Xp)+JP(u)=O, 1<p<N-l, 

u(O) = u(l) = 0, 

where 1h is the same as before, and 

Jp(U) = (4p,I(U), Jp,2(), 2*--, Jp,m(U))T, 

fXp+l / fXp+1 dt 
Jp i(u) = Ai,p+I (jfi1(x, u(x))] ai(t) dx 

+ Ai,pJ (f(xu(x))J dt dx. 

Let Phu be the piecewise linear interpolant of u corresponding to PI}N and 
suppose that {pq}N are the standard piecewise linear basis functions. Then 
assumptions (H1)- (H5) are satisfied and 

N 
PhU(X) = E U(Xp)(Po(X). 

p=O 

Therefore, 
max IPhu(x) - u(x)I < c1h2, 

where cl is a positive constant depending only on IJuI C2(I). Hence, there is a 
positive constant c2 such that 

Vp(U) - Jp(Phu)I < c2h3. 

Now put Zh (Xp) = Uh (Xp) - u (xp) . Then 

lhZh(Xp) + Jh,p(Uh) - Jh,p(U) = Jp(u) -p(U), 

and so 
lhZh(Xp) + Qh,p(Uh, U) = Jp(U) - Jh,p(U). 

Theorem 3.4. Let u and Uh be the solution of (2.1) and (3.1) in K(u*, u*), 
respectively. Assume that 

(i) 4/JMm < ao, 

(ii) IFi,j(x, q)I < M1 for all x e I and q e K(u*, u*), 
(iii) {p( }N are the standard piecewise linear basis functions. 
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Then for some C3 > 0, 

IIU - UhIloo < ?U - Uh11 < c3h. 

Proof. Analogously to the procedure used for demonstrating Theorem 3.2, one 
can obtain 

aOIZh I < 4/3MlmIzhIh + cE h3lzh(xp)I. 
p 

One also has that the last term above is bounded by 

c Z(1 2 zh(xp )) ( fh21h2) ? e hp z(xp) + 4 ( hpfl2h4) 
p p p 

for any e > 0, and the result follows. El 

4. FURTHER APPROXIMATIONS 

In general, the integrals in (3.5) cannot be evaluated exactly. One way of 
overcoming this difficulty is to replace ai by an approximation. Here we use a 
piecewise linear approximant ai to ai, namely 

&1(x) = 4-(ai(xp-i)(xp - x) + ai(xp)(x - xp-i)), x E Ip. 
p 

Let / = diag(li, 12, ..., Im) andi iu (x) = -(di(x)fia(x))'. Then the corre- 
sponding problem is to find iu e [C2(I) n C1(7)]m such that 

(4.1) {5 L(0) = ()ii(x)+f(x,i(x))=0, xel, 

(4.1) 1~ ai(0) = a(l) =O. 

Clearly, ai and ?i satisfy the same conditions as those in ?2. Thus, for problem 
(4.1), we have results similar to those in Theorems 2.1-2.3. 

Now let 
1h = diag(lh, 1, 1h,2, 1 h,m) 

lh, iUh, i(Xp) = -Ai,pih, i(xp-i ) + (Ai,p + Aip+1) ih, i(Xp)-Ai,p+jiih,i(Xp+1), 

and 
Jh, ,p(iih) = (Jh,p,I(ah), * Jh,p,m(ih))T 

Jh, p, i (Uhh)= Ai,p+1 X i (X Uh (Xp) P (X) + Uh (Xp? 1)O(X) )]I ] dx 

+ p Aif [fi(X Uh(Xp-1) Op-1(X) + h(Xp)P(X)) j ] dx, 

where 
ji; p (JXp dt)- 

Then the corresponding Petrov-Galerkin method is to find Uh e Sh such that 

(4.2)I Lhfih(xp) = ?, 
I < p < N - 1, 
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We can establish results similar to those in Theorems 3.1-3.3. If, in addition, 
{ pjN are the standard piecewise linear basis functions, then 

(4.3) 11iu - Uihlloo < c4h2. 

On the other hand, if we put z = u - u, then 

f lizi(x) + E Fi j(x, O(x))zj(x) 

(4.4) f ((zi(x) -)ai7(x))1uj;(x))', x e I, 1 <i < m 

Z(0) = Z(l) = 0, 

where 6 lies between u and iu. If u, iu e K(u*, u*) and IFi,j(x, 1)I < M1 
for all x e I and q e K(u*, u*), then we have from (4.4) that for an arbitrary 
positive constant e, 

(aO - Mlm)Iz~l l(I) < | j (&i (x) - ai(x))u'i(x)z'(x) dx 

<CIZ|HIp(I)+ | ((+i(x)j- ai(x))ut(x))2 dx 

<CIZIlHi(I) + h, 

where c5 is a positive constant depending only on Ia llH2(I) and IIUIIH1(I) . Thus, 
if Mim + C < ao, then 

C52 
(4.5) I1u - uIILOO(I) < IU - UIHI(I) < e(ao - MIm - e) 

The integral in (4.2) is still a difficulty for general functions f . To overcome 
this, we can use piecewise linear interpolation also for f(x, u(x)) as follows. 
Let 

Jhp(Uh) = (Jh,pl(Uh) ,Jh,p,m(Uh)) 5 

z ~~~~~~Xp+1F 
Jh,p,i(iUh) =Aip+l ] [(fi(Xp fh (Xp)) op,i(X) 

xp~ ~~~~Ud 
+fi (xp+ 1, Uh (Xp+ 1)) )P+ 1, i (X)) dt ] dx 

+ Aip] [(fi(xpil Uh(XP-1))p-1,i(X) 
xp-1 

+fi(xp, Uh(XP)) OP,i(X))j dt] dx, 

and 

Lh Uh (Xp) = lh Uh (XP) + Jh, p (fUh) 

Then the Petrov-Galerkin method leads to the following problem: 

{ Lhih(PXp) = 0. < p < N. 
1 h (0n = h2 l 0 A= 
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Let Zh = Uh - Uh. Then 

1hZh(Xp) + Qh,p(Uh, Uh) = Jh,p(ih) - Jh,p(i'h), 

where Qh p is similar to Qh,p, but ai and Ai,p are replaced by ai and Ai,p, 
respectively. It is easy to verify that 

1Jh, p (ih) - Jh, p (iUh) c6h3, 

where c6 is a positive constant depending only on ,B, max I&2ft/u1aujK, and 

Iuhh . So, if MIm < ao , then for some C7 > 0, we have 

(4.6) 11uh - Uihlloo < c7h2. 

By combining (4.3) and (4.5) with (4.6), we conclude that for some c8 > 0, 

1u - Uhloo < c8h2. 
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